背景:目前keras框架使用简单,很容易上手,深得广大算法工程师的喜爱,但是当部署到客户端时,可能会出现各种各样的bug,甚至不支持使用keras,本文来解决的是将keras的h5模型转换为客户端常用的tensorflow的pb模型并使用tensorflow加载pb模型。
h5_to_pb.py
from keras.models import load_model
import tensorflow as tf
import os
import os.path as osp
from keras import backend as K
#路径参数
input_path = 'input path'
weight_file = 'weight.h5'
weight_file_path = osp.join(input_path,weight_file)
output_graph_name = weight_file[:-3] + '.pb'
#转换函数
def h5_to_pb(h5_model,output_dir,model_name,out_prefix = "output_",log_tensorboard = True):
if osp.exists(output_dir) == False:
os.mkdir(output_dir)
out_nodes = []
for i in range(len(h5_model.outputs)):
out_nodes.append(out_prefix + str(i + 1))
tf.identity(h5_model.output[i],out_prefix + str(i + 1))
sess = K.get_session()
from tensorflow.python.framework import graph_util,graph_io
init_graph = sess.graph.as_graph_def()
main_graph = graph_util.convert_variables_to_constants(sess,init_graph,out_nodes)
graph_io.write_graph(main_graph,output_dir,name = model_name,as_text = False)
if log_tensorboard:
from tensorflow.python.tools import import_pb_to_tensorboard
import_pb_to_tensorboard.import_to_tensorboard(osp.join(output_dir,model_name),output_dir)
#输出路径
output_dir = osp.join(os.getcwd(),"trans_model")
#加载模型
h5_model = load_model(weight_file_path)
h5_to_pb(h5_model,output_dir = output_dir,model_name = output_graph_name)
print('model saved')
将转换成的pb模型进行加载
load_pb.py
import tensorflow as tf
from tensorflow.python.platform import gfile
def load_pb(pb_file_path):
sess = tf.Session()
with gfile.FastGFile(pb_file_path, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
sess.graph.as_default()
tf.import_graph_def(graph_def, name='')
print(sess.run('b:0'))
#输入
input_x = sess.graph.get_tensor_by_name('x:0')
input_y = sess.graph.get_tensor_by_name('y:0')
#输出
op = sess.graph.get_tensor_by_name('op_to_store:0')
#预测结果
ret = sess.run(op, {input_x: 3, input_y: 4})
print(ret)
补充知识:h5模型转化为pb模型,代码及排坑
我是在实际工程中要用到tensorflow训练的pb模型,但是训练的代码是用keras写的,所以生成keras特定的h5模型,所以用到了h5_to_pb.py函数。
附上h5_to_pb.py(python3)
#*-coding:utf-8-*
"""
将keras的.h5的模型文件,转换成TensorFlow的pb文件
"""
# ==========================================================
from keras.models import load_model
import tensorflow as tf
import os.path as osp
import os
from keras import backend
#from keras.models import Sequential
def h5_to_pb(h5_model, output_dir, model_name, out_prefix="output_", log_tensorboard=True):
""".h5模型文件转换成pb模型文件
Argument:
h5_model: str
.h5模型文件
output_dir: str
pb模型文件保存路径
model_name: str
pb模型文件名称
out_prefix: str
根据训练,需要修改
log_tensorboard: bool
是否生成日志文件
Return:
pb模型文件
"""
if os.path.exists(output_dir) == False:
os.mkdir(output_dir)
out_nodes = []
for i in range(len(h5_model.outputs)):
out_nodes.append(out_prefix + str(i + 1))
tf.identity(h5_model.output[i], out_prefix + str(i + 1))
sess = backend.get_session()
from tensorflow.python.framework import graph_util, graph_io
# 写入pb模型文件
init_graph = sess.graph.as_graph_def()
main_graph = graph_util.convert_variables_to_constants(sess, init_graph, out_nodes)
graph_io.write_graph(main_graph, output_dir, name=model_name, as_text=False)
# 输出日志文件
if log_tensorboard:
from tensorflow.python.tools import import_pb_to_tensorboard
import_pb_to_tensorboard.import_to_tensorboard(os.path.join(output_dir, model_name), output_dir)
if __name__ == '__main__':
# .h模型文件路径参数
input_path = 'D:/CSP'
weight_file = 'xingren.h5'
weight_file_path = os.path.join(input_path, weight_file)
output_graph_name = weight_file[:-3] + '.pb'
# pb模型文件输出输出路径
output_dir = osp.join(os.getcwd(),"trans_model")
#model.save(xingren.h5)
# 加载模型
#h5_model = Sequential()
h5_model = load_model(weight_file_path)
#h5_model.save(weight_file_path)
#h5_model.save('xingren.h5')
h5_to_pb(h5_model, output_dir=output_dir, model_name=output_graph_name)
print ('Finished')
在运行的时候遇到了下面问题:
原因:我们训练模型的时候用save_weights函数保存模型,但是这个函数只保存了权重文件,并没有又保存模型的参数。要把save_weights改为save。
下边是两个函数介绍:
save()保存的模型结果,它既保持了模型的图结构,又保存了模型的参数。
save_weights()保存的模型结果,它只保存了模型的参数,但并没有保存模型的图结构
以上这篇将keras的h5模型转换为tensorflow的pb模型操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站文章均来自网站采集或用户投稿,网站不提供任何软件下载或自行开发的软件! 如有用户或公司发现本站内容信息存在侵权行为,请邮件告知! 858582#qq.com
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]
